M16C/6N Group (M16C/6NL, M16C/6NN)

Renesas MCU

1. Overview

The M16C/6N Group (M16C/6NL, M16C/6NN) of MCUs are built using the high-performance silicon gate CMOS process using the M16C/60 Series CPU core and are packaged in 100-pin and 128-pin plastic molded LQFP. These MCUs operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. Being equipped with one CAN (Controller Area Network) module in the M16C/6N Group (M16C/6NL, M16C/6NN), the MCU is suited to drive automotive and industrial control systems. The CAN module complies with the 2.0B specification. In addition, this MCU contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA , communication equipment which requires high-speed arithmetic/logic operations.

1.1 Applications

- Car audio and industrial control systems, other

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

1.2 Performance Overview

Tables 1.1 and 1.2 list the Functions and Specifications for M16C/6N Group (M16C/6NL, M16C/6NN).
Table 1.1 Functions and Specifications for M16C/6N Group (100-pin Version: M16C/6NL)

Item			Specification
CPU	Number of fundamental instructions		91 instructions
	Minimum instruction execution time		$41.7 \mathrm{~ns}(f(B C L K)=24 \mathrm{MHz}, 1 / 1$ prescaler, without software wait)
	Operating mode		Single-chip, memory expansion and microprocessor modes
	Address space		1 Mbyte
	Memory capacity		Refer to Table 1.3 Product Information
Peripheral Function	Ports		Input/Output: 87 pins, Input: 1 pin
			Timer A: 16 bits $\times 5$ channels Timer B: 16 bits $\times 6$ channels Three-phase motor control circuit
	Serial interfaces		3 channels Clock synchronous, UART, $\mathrm{I}^{2} \mathrm{C}$-bus ${ }^{(1)}$, IEBus ${ }^{(2)}$ 2 channels Clock synchronous
	A/D converter		10-bit A/D converter: 1 circuit, 26 channels
	D/A converter		8 bits $\times 2$ channels
	DMAC		2 channels
	CRC calculation circuit		CRC-CCITT
	CAN module		1 channel with 2.0B specification
	Watchdog timer		15 bits $\times 1$ channel (with prescaler)
	Interrupts		Internal: 30 sources, External: 9 sources Software: 4 sources, Priority levels: 7 levels
	Clock generation circuits		4 circuits - Main clock oscillation circuit (*) - Sub clock oscillation circuit (*) - On-chip oscillator - PLL frequency synthesizer (*) Equipped with on-chip feedback resistor
	Oscillation-sto	ped detector	Main clock oscillation stop and re-oscillation detection function
Electrical Characteristics	Supply voltage		VCC $=3.0$ to 5.5 V $(f(B C L K)=24 \mathrm{MHz}, 1 / 1$ prescaler, without software wait)
	Consumption current	Mask ROM	$19 \mathrm{~mA}(f(B C L K)=24 \mathrm{MHz}$, PLL operation, no division)
		Flash memory	$21 \mathrm{~mA}(f(B C L K)=24 \mathrm{MHz}$, PLL operation, no division)
		Mask ROM	$3 \mu \mathrm{~A}(f($ BCLK $)=32 \mathrm{kHz}$, Wait mode, Oscillation capacity Low)
		Flash memory	$0.8 \mu \mathrm{~A}$ (Stop mode, $\mathrm{Topr}=25^{\circ} \mathrm{C}$)
Flash Memory Version	Programming and erasure voltage		$3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$
	Programming and erasure endurance		100 times
I/O	I/O withstand voltage		5.0 V
Characteristics	Output current		5 m A
Operating Ambient Temperature			-40 to $85^{\circ} \mathrm{C}$
			CMOS high-performance silicon gate
Device Configuration			100-pin molded-plastic LQFP

NOTES:

1. I ${ }^{2} \mathrm{C}$-bus is a trademark of Koninklijke Philips Electronics N.V.
2. IEBus is a trademark of NEC Electronics Corporation.

Table 1.2 Functions and Specifications for M16C/6N Group (128-pin Version: M16C/6NN)

Item			Specification
CPU	Number of fundamental instructions		91 instructions
	Minimum instruction execution time		$41.7 \mathrm{~ns}(\mathrm{f}(\mathrm{BCLK})=24 \mathrm{MHz}, 1 / 1$ prescaler, without software wait)
	Operating mode		Single-chip, memory expansion and microprocessor modes
	Address space		1 Mbyte
	Memory capacity		Refer to Table 1.3 Product Information
Peripheral Function	Ports		Input/Output: 113 pins, Input: 1 pin
	Multifunction timers		Timer A: 16 bits $\times 5$ channels Timer B: 16 bits $\times 6$ channels Three-phase motor control circuit
	Serial interfaces		3 channels Clock synchronous, UART, I²-bus ${ }^{(1)}$, IEBus ${ }^{(2)}$ 4 channels Clock synchronous
	A/D converter		10-bit A/D converter: 1 circuit, 26 channels
	D/A converter		8 bits $\times 2$ channels
	DMAC		2 channels
	CRC calculation circuit		CRC-CCITT
	CAN module		1 channel with 2.0B specification
	Watchdog timer		15 bits $\times 1$ channel (with prescaler)
	Interrupts		Internal: 32 sources, External: 12 sources Software: 4 sources, Priority levels: 7 levels
	Clock generation circuits		4 circuits - Main clock oscillation circuit (*) - Sub clock oscillation circuit (*) - On-chip oscillator - PLL frequency synthesizer (*) Equipped with on-chip feedback resistor
	Oscillation-stopped detector		Main clock oscillation stop and re-oscillation detection function
Electrical Characteristics	Supply voltage		VCC $=3.0$ to 5.5 V $(f(B C L K)=24 \mathrm{MHz}, 1 / 1$ prescaler, without software wait)
	Consumption current	Mask ROM	$19 \mathrm{~mA}(\mathrm{f}(\mathrm{BCLK})=24 \mathrm{MHz}$, PLL operation, no division)
		Flash memory	$21 \mathrm{~mA}(\mathrm{f}(\mathrm{BCLK})=24 \mathrm{MHz}, \mathrm{PLL}$ operation, no division)
		Mask ROM	$3 \mu \mathrm{~A}(\mathrm{f}(\mathrm{BCLK})=32 \mathrm{kHz}$, Wait mode, Oscillation capacity Low)
		Flash memory	$0.8 \mu \mathrm{~A}$ (Stop mode, $\mathrm{Topr}=25^{\circ} \mathrm{C}$)
Flash Memory Version	Programming and erasure voltage		$3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$
	Programming and erasure endurance		100 times
I/O Characteristics	I/O withstand voltage		5.0 V
	Output current		5 m A
Operating Ambient Temperature			-40 to $85^{\circ} \mathrm{C}$
Device Configuration			CMOS high-performance silicon gate
Package			128-pin molded-plastic LQFP

NOTES:

1. $I^{2} \mathrm{C}$-bus is a trademark of Koninklijke Philips Electronics N.V.
2. IEBus is a trademark of NEC Electronics Corporation.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

Figure 1.1 Block Diagram

1.4 Product Information

Table 1.3 lists the Product Information and Figure 1.2 shows the Type Number, Memory Size, and Packages.
Table 1.3 Product Information
As of Aug. 2006

Type No.	ROM Capacity	RAM Capacity	Package Type ${ }^{(2)}$	Remarks
M306NLFHGP	384 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	Flash memory version ${ }^{(1)}$
M306NNFHGP			PLQP0128KB-A	
M306NLFJGP	512 K + 4 Kbytes	31 Kbytes	PLQP0100KB-A	
M306NNFJGP			PLQP0128KB-A	
M306NLME-XXXGP	192 Kbytes	16 Kbytes	PLQP0100KB-A	Mask ROM version
M306NNME-XXXGP			PLQP0128KB-A	
M306NLMG-XXXGP	256 Kbytes	20 Kbytes	PLQP0100KB-A	
M306NNMG-XXXGP			PLQP0128KB-A	

NOTES:

1. Data flash memory provides an additional 4 Kbytes of ROM capacity (block A).
2. The correspondence between new and old package types is as follows.

PLQP0100KB-A: 100P6Q-A
PLQP0128KB-A: 128P6Q-A

Figure 1.2 Type Number, Memory Size, and Package

1.5 Pin Assignments

Figures 1.3 and 1.4 show the Pin Assignment (Top View). Tables 1.4 to1.8 list the List of Pin Names.

Figure 1.3 Pin Assignments (Top View) (1)

Table 1.4 List of Pin Names for 100-Pin Package (1)

Pin No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pin
1		P9_4		TB4IN		DA1		
2		P9_3		TB3IN		DA0		
3		P9_2		TB2IN	SOUT3			
4		P9_1		TB1IN	SIN3			
5		P9_0		TBOIN	CLK3			
6	BYTE							
7	CNVSS							
8	XCIN	P8_7						
9	XCOUT	P8_6						
10	RESET							
11	XOUT							
12	VSS							
13	XIN							
14	VCC1							
15		P8_5	NMI					
16		P8_4	INT2	ZP				
17		P8_3	INT1					
18		P8_2	INT0					
19		P8_1		TA4IN/U				
20		P8_0		TA4OUT/U	(SIN4)			
21		P7_7		TA3IN				
22		P7_6		TA3OUT				
23		P7_5		TA2IN/W	(SOUT4)			
24		P7_4		TA2OUT/W	(CLK4)			
25		P7_3		TA1IN/V	CTS2/RTS2			
26		P7_2		TA1OUT/V	CLK2			
27		P7_1		TA0IN/TB5IN	RXD2/SCL2			
28		P7_0		TA0OUT	TXD2/SDA2			
29		P6_7			TXD1/SDA1			
30		P6_6			RXD1/SCL1			
31		P6_5			CLK1			
32		P6_4			CTS1/RTS1/CTS0/CLKS1			
33		P6_3			TXD0/SDA0			
34		P6_2			RXD0/SCL0			
35		P6_1			CLK0			
36		P6_0			CTS0/RTS0			
37		P5_7						RDY/CLKOUT
38		P5_6						ALE
39		P5_5						HOLD
40		P5_4						HLDA
41		P5_3						BCLK
42		P5_2						RD
43		P5_1						WRH/BHE
44		P5_0						WRL/WR
45		P4_7						CS3
46		P4_6						CS2
47		P4_5						CS1
48		P4_4						CS0
49		P4_3						A19
50		P4_2						A18

Table 1.5 List of Pin Names for 100-Pin Package (2)

Pin No.	$\begin{array}{\|c} \hline \text { Control } \\ \text { Pin } \end{array}$	Port	$\begin{array}{\|c\|} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pin
51		P4_1						A17
52		P4_0						A16
53		P3_7						A15
54		P3_6						A14
55		P3_5						A13
56		P3_4						A12
57		P3_3						A11
58		P3_2						A10
59		P3_1						A9
60	VCC2							
61		P3_0						A8(/-/D7)
62	VSS							
63		P2_7				AN2_7		A7(/D7/D6)
64		P2_6				AN2_6		A6(/D6/D5)
65		P2_5				AN2_5		A5(/D5/D4)
66		P2_4				AN2_4		A4(/D4/D3)
67		P2_3				AN2_3		A3(/D3/D2)
68		P2_2				AN2_2		A2(/D2/D1)
69		P2_1				AN2_1		A1(/D1/D0)
70		P2_0				AN2_0		A0(/D0/-)
71		P1_7	INT5					D15
72		P1_6	INT4					D14
73		P1_5	INT3					D13
74		P1_4						D12
75		P1_3						D11
76		P1_2						D10
77		P1_1						D9
78		P1_0						D8
79		P0_7				ANO_7		D7
80		P0_6				ANO_6		D6
81		P0_5				ANO_5		D5
82		P0_4				ANO_4		D4
83		P0_3				ANO_3		D3
84		P0_2				ANO_2		D2
85		P0_1				ANO_1		D1
86		P0_0				ANO_0		D0
87		P10_7	KI3			AN7		
88		P10_6	KI2			AN6		
89		P10_5	KI1			AN5		
90		P10_4	KIO			AN4		
91		P10_3				AN3		
92		P10_2				AN2		
93		P10_1				AN1		
94	AVSS							
95		P10_0				ANO		
96	VREF							
97	AVCC							
98		P9_7			SIN4	ADTRG		
99		P9_6			SOUT4	ANEX1	CTX0	
100		P9_5			CLK4	ANEXO	CRXO	

Figure 1.4 Pin Assignments (Top View) (2)

Table 1.6 List of Pin Names for 128-Pin Package (1)

Pin No.	$\begin{array}{\|c\|} \hline \text { Control } \\ \text { Pin } \end{array}$	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	$\begin{gathered} \hline \text { CAN Module } \\ \text { Pin } \end{gathered}$	$\begin{aligned} & \text { Bus Control } \\ & \text { Pin } \end{aligned}$
1	VREF							
2	AVCC							
3		P9_7			SIN4	ADTRG		
4		P9_6			SOUT4	ANEX1	CTXO	
5		P9_5			CLK4	ANEX0	CRXO	
6		P9_4		TB4IN		DA1		
7		P9_3		TB3IN		DA0		
8		P9_2		TB2IN	SOUT3			
9		P9_1		TB1IN	SIN3			
10		P9_0		TBOIN	CLK3			
11		P14_1						
12		P14_0						
13	BYTE							
14	CNVSS							
15	XCIN	P8_7						
16	XCOUT	P8_6						
17	RESET							
18	XOUT							
19	VSS							
20	XIN							
21	VCC1							
22		P8_5	NMI					
23		P8_4	$\overline{\text { INT2 }}$	ZP				
24		P8_3	$\overline{\text { INT1 }}$					
25		P8_2	INT0					
26		P8_1		TA4IN/U				
27		P8_0		TA4OUT/U	(SIN4)			
28		P7_7		TA3IN				
29		P7_6		TA3OUT				
30		P7_5		TA2IN/W	(SOUT4)			
31		P7_4		TA2OUT/W	(CLK4)			
32		P7_3		TA1IN/V	CTS2/RTS2			
33		P7_2		TA1OUT/V	CLK2			
34		P7_1		TA0IN/TB5IN	RXD2/SCL2			
35		P7_0		TA0OUT	TXD2/SDA2			
36		P6_7			TXD1/SDA1			
37	VCC1							
38		P6_6			RXD1/SCL1			
39	VSS							
40		P6_5			CLK1			
41		P6_4			CTS1/RTS1/CTS0/CLKS1			
42		P6_3			TXD0/SDA0			
43		P6_2			RXD0/SCL0			
44		P6_1			CLK0			
45		P6_0			CTSO/RTSO			
46		P13_7	INT8					
47		P13_6	INT7					
48		P13_5	INT6					
49		P13_4						
50		P5_7						RDY/CLKOUT

Table 1.7 List of Pin Names for 128-Pin Package (2)

Pin No.	$\begin{array}{\|c} \hline \text { Control } \\ \text { Pin } \end{array}$	Port	$\begin{array}{\|c\|} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	Bus Control Pin
51		P5_6						ALE
52		P5_5						$\overline{\text { HOLD }}$
53		P5_4						HLDA
54		P13_3						
55		P13_2						
56		P13_1						
57		P13_0						
58		P5_3						BCLK
59		P5_2						RD
60		P5_1						WRH/BHE
61		P5_0						WRL/WR
62		P12_7						
63		P12_6						
64		P12_5						
65		P4_7						CS3
66		P4_6						CS2
67		P4_5						$\overline{\text { CS1 }}$
68		P4_4						CS0
69		P4_3						A19
70		P4_2						A18
71		P4_1						A17
72		P4_0						A16
73		P3_7						A15
74		P3_6						A14
75		P3_5						A13
76		P3_4						A12
77		P3_3						A11
78		P3_2						A10
79		P3_1						A9
80		P12_4						
81		P12_3						
82		P12_2						
83		P12_1						
84		P12_0						
85	VCC2							
86		P3_0						A8(/-/D7)
87	VSS							
88		P2_7				AN2_7		A7(/D7/D6)
89		P2_6				AN2_6		A6(/D6/D5)
90		P2_5				AN2_5		A5(/D5/D4)
91		P2_4				AN2_4		A4(/D4/D3)
92		P2_3				AN2_3		A3(/D3/D2)
93		P2_2				AN2_2		A2(/D2/D1)
94		P2_1				AN2_1		A1(/D1/D0)
95		P2_0				AN2_0		A0(/D0/-)
96		P1_7	INT5					D15
97		P1_6	INT4					D14
98		P1_5	INT3					D13
99		P1_4						D12
100		P1_3						D11

Table 1.8 List of Pin Names for 128-Pin Package (3)

Pin No.	Control Pin	Port	$\begin{array}{\|c\|} \hline \text { Interrupt } \\ \text { Pin } \end{array}$	Timer Pin	UART Pin	Analog Pin	CAN Module Pin	$\begin{gathered} \hline \text { Bus Control } \\ \text { Pin } \end{gathered}$
101		P1_2						D10
102		P1_1						D9
103		P1_0						D8
104		P0_7				ANO_7		D7
105		P0_6				ANO_6		D6
106		P0_5				ANO_5		D5
107		P0_4				ANO_4		D4
108		P0_3				ANO_3		D3
109		P0_2				ANO_2		D2
110		P0_1				ANO_1		D1
111		P0_0				ANO_0		D0
112		P11_7			SIN6			
113		P11_6			SOUT6			
114		P11_5			CLK6			
115		P11_4						
116		P11_3						
117		P11_2			SOUT5			
118		P11_1			SIN5			
119		P11_0			CLK5			
120		P10_7	KI3			AN7		
121		P10_6	KI2			AN6		
122		P10_5	KI1			AN5		
123		P10_4	$\overline{\mathrm{KIO}}$			AN4		
124		P10_3				AN3		
125		P10_2				AN2		
126		P10_1				AN1		
127	AVSS							
128		P10_0				AN0		

1.6 Pin Functions

Tables 1.9 to 1.11 list the Pin Functions.

Table 1.9 Pin Functions (100-pin and 128-pin Versions) (1)

Signal Name	Pin Name	I/O Type	Description
Power supply input	$\begin{aligned} & \text { VCC1, VCC2, } \\ & \text { VSS } \end{aligned}$	I	Apply 3.0 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC apply condition is that VCC2 $=\mathrm{VCC} 1{ }^{(1)}$.
Analog power supply input	AVCC, AVSS	1	Applies the power supply for the A/D converter. Connect the AVCC pin to VCC1. Connect the AVSS pin to VSS.
Reset input	RESET	I	The MCU is in a reset state when applying "L" to the this pin.
CNVSS	CNVSS	I	Switches processor mode. Connect this pin to VSS to when after a reset to start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode.
External data bus width select input	BYTE	I	Switches the data bus in external memory space. The data bus is 16 -bit long when the this pin is held " L " and 8 -bit long when the this pin is held "H". Set it to either one. Connect this pin to VSS when single-chip mode.
Bus control pins	D0 to D7	I/O	Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
	D8 to D15	I/O	Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the separate bus.
	A0 to A19	0	Output address bits (A0 to A19).
	A0/D0 to A7/D7	I/O	Input and output data (D0 to D7) and output address bits (A0 to A7) by time-sharing when external 8-bit data bus are set as the multiplexed bus.
	A1/D0 to A8/D7	I/O	Input and output data (D0 to D7) and output address bits (A1 to A8) by time-sharing when external 16-bit data bus are set as the multiplexed bus.
	CS0 to CS3	0	Output $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS}}$ signals. $\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$ are chip-select signals to specify an external space.
	WRL/WR WRH/BHE RD	0	Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or $\overline{\mathrm{BHE}}$, and \bar{W} can be switched by program. - WRL, WRH, and RD are selected The WRL signal becomes "L" by writing data to an even address in an external memory space. The WRH signal becomes "L" by writing data to an odd address in an external memory space. The RD pin signal becomes " L " by reading data in an external memory space. - $\overline{W R}, \overline{B H E}$, and $\overline{\mathrm{RD}}$ are selected The WR signal becomes "L" by writing data in an external memory space. The RD signal becomes " L " by reading data in an external memory space. The BHE signal becomes " L " by accessing an odd address. Select WR, BHE, and RD for an external 8-bit data bus.
	ALE	0	ALE is a signal to latch the address.
	HOLD	1	While the HOLD pin is held "L", the MCU is placed in a hold state.
	HLDA	0	In a hold state, HLDA outputs a "L" signal.
	RDY	I	While applying a "L" signal to the RDY pin, the MCU is placed in a wait state.

I: Input O: Output I/O: Input/Output

NOTE:

1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Table 1.10 Pin Functions (100-pin and 128-pin Versions) (2)

Signal Name	Pin Name	I/O Type	Description
Main clock input	XIN	I	I/O pins for the main clock oscillation circuit. Connect a ceramic resonator or crystal oscillator between XIN and XOUT (1).
Main clock output	XOUT	O lo use the external clock, input the clock from XIN and leave	
XOUT open.			

I: Input O: Output I/O: Input/Output

NOTES:

1. Ask the oscillator maker the oscillation characteristic.
2. INT6 to INT8, CLK5, CLK6, SIN5, SIN6, SOUT5, SOUT6 are only in the 128-pin version.

Table 1.11 Pin Functions (100-pin and 128-pin Versions) (3)

Signal Name	Pin Name	I/O Type	Description
I/O port	$\begin{aligned} & \text { P0_0 to P0_7 } \\ & \text { P1_0 to P1_7 } \\ & \text { P2_0 to P2_7 } \\ & \text { P3_0 to P3_7 } \\ & \text { P4_0 to P4_7 } \\ & \text { P5_0 to P5_7 } \\ & \text { P6_0 to P6_7 } \\ & \text { P7_0 to P7_7 } \\ & \text { P8_0 to P8_4 } \\ & \text { P8_6, P8_7 } \\ & \text { P9_0 to P9_7 } \\ & \text { P10_0 to P10_7 } \\ & \text { P11_0 to P11_7 }{ }^{(1)} \\ & \text { P12_0 to P12_7 }{ }^{(1)} \\ & \text { P13_0 to P13_7 }{ }^{(1)} \\ & \text { P14_0, P14_1 }{ }^{(1)} \end{aligned}$	I/O	8-bit I/O ports in CMOS, having a direction register to select an input or output. Each pin is set as an input port or output port. An input port can be set for a pull-up or for no pull-up in 4-bit unit by program. (however P7_1 and P9_1 for the N-channel open drain output.)
Input port	P8_5	I	Input pin for the $\overline{\mathrm{NMI}}$ interrupt. Pin states can be read by the P8_5 bit in the P8 register.

I: Input O: Output I/O: Input/Output

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two register banks.

NOTE:

1. These registers comprise a register bank. There are two register banks.

Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as RO.
The RO register can be separated between high (ROH) and low (ROL) for use as two 8-bit data registers. R1H and R1L are the same as ROH and R0L. Conversely R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

The A0 register consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and arithmetic/logic operations. A1 is the same as AO.
In some instructions, A1 and A0 can be combined for use as a 32 -bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP), Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

This flag is used exclusively for debugging purpose. During normal use, set to 0 .

2.8.3 Zero Flag (Z Flag)

This flag is set to 1 when an arithmetic operation resulted in 0 ; otherwise, it is 0 .

2.8.4 Sign Flag (S Flag)

This flag is set to 1 when an arithmetic operation resulted in a negative value; otherwise, it is 0 .

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is 0 ; register bank 1 is selected when this flag is 1 .

2.8.6 Overflow Flag (O Flag)

This flag is set to 1 when the operation resulted in an overflow; otherwise, it is 0 .

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.
Maskable interrupts are disabled when the I flag is 0 , and are enabled when the Iflag is 1 . The I flag is set to 0 when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0 ; USP is selected when the U flag is 1 .
The U flag is set to 0 when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.
If a requested interrupt has priority greater than IPL, the interrupt request is enabled.

2.8.10 Reserved Area

When white to this bit, write 0 . When read, its content is undefined.

3. Memory

Figure 3.1 shows a Memory Map. The address space extends the 1 Mbyte from address 00000h to FFFFFh. The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 512-Kbyte internal ROM is allocated to the addresses from 80000h to FFFFFh.
As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.
The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.
The internal RAM is allocated in an upper address direction beginning with address 00400 h . For example, a 31 -Kbyte internal RAM is allocated to the addresses from 00400h to 07FFFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.
The Special Function Registers (SFRs) are allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be accessed by user.
The special page vector table is allocated to the addresses from FFEOOh to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to M16C/60, M16C/20, M16C/Tiny Series Software Manual. In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

Figure 3.1 Memory Map

4. Special Function Registers (SFRs)

An SFR (Special Function Register) is a control register for a peripheral function.
Tables 4.1 to 4.12 list the SFR Information.
Table 4.1 SFR Information (1) ${ }^{(3)}$

Address	Register	Symbol	After Reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 (1)	PMO	$\begin{aligned} & \text { 00000000b (CNVSS pin is "L") } \\ & 00000011 \mathrm{~b} \text { (CNVSS pin is "H") } \end{aligned}$
0005h	Processor Mode Register 1	PM1	00001000b
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	Chip Select Control Register	CSR	00000001b
0009h	Address Match Interrupt Enable Register	AIER	XXXXXX00b
000Ah	Protect Register	PRCR	XX000000b
000Bh			
000Ch	Oscillation Stop Detection Register (2)	CM2	0X000000b
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00XXXXXXb
0010h			00h
0011h	Address Match Interrupt Register 0	RMADO	00h
0012h			XOh
0013h			
0014h			00h
0015h	Address Match Interrupt Register 1	RMAD1	00h
0016h			XOh
0017h			
0018h			
0019h			
001Ah			
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch	PLL Control Register 0	PLC0	0001X010b
001Dh			
001Eh	Processor Mode Register 2	PM2	XXX00000b
001Fh			
0020h			XXh
0021h	DMAO Source Pointer	SAR0	XXh
0022h			XXh
0023h			
0024h			XXh
0025h	DMA0 Destination Pointer	DAR0	XXh
0026h			XXh
0027h			
0028h	DMAO Transfer Counter	TCR0	XXh
0029h	DMAO Transfer Counter	TCRO	XXh
002Ah			
002Bh			
002Ch	DMA0 Control Register	DMOCON	00000X00b
002Dh			
002Eh			
002Fh			
0030h			XXh
0031h	DMA1 Source Pointer	SAR1	XXh
0032h			XXh
0033h			
0034h			XXh
0035h	DMA1 Destination Pointer	DAR1	XXh
0036h			XXh
0037h			
0038h	DMA1 Transfer Counter	TCR1	XXh
0039h			XXh
003Ah			
003Bh			
003Ch	DMA1 Control Register	DM1CON	00000X00b
003Dh			
003Eh			
003Fh			

X : Undefined

NOTES:

1. Bits PM00 and PM01 in the PM0 register do not change at software reset, watchdog timer reset and oscillation stop detection reset.
2. Bits CM20, CM21, and CM27 in the CM2 register do not change at oscillation stop detection reset
3. Blank spaces are reserved. No access is allowed.

Table 4.2 SFR Information (2) ${ }^{(2)}$

Address	Register	Symbol	After Reset
0040h			
0041h	CANO Wake-up Interrupt Control Register	C01WKIC	XXXXX000b
0042h	CANO Successful Reception Interrupt Control Register	CORECIC	XXXXX000b
0043h	CANO Successful Transmission Interrupt Control Register	COTRMIC	XXXXX000b
0044h	INT3 Interrupt Control Register	INT3IC	XX00X000b
0045h	Timer B5 Interrupt Control Register	TB5IC	
0045h	SI/O5 Interrupt Control Register ${ }^{(1)}$	S5IC	XXXXX000b
0046h	Timer B4 Interrupt Control Register	TB4IC	
0046h	UART1 Bus Collision Detection Interrupt Control Register	U1BCNIC	XXXXX000b
0047h	Timer B3 Interrupt Control Register	TB3IC	
0047h	UARTO Bus Collision Detection Interrupt Control Register	UOBCNIC	XXXXX000b
0048h	SI/O4 Interrupt Control Register	S4IC	XX00X000b
0048h	INT5 Interrupt Control Register	INT5IC	XX00x000b
0049h	SI/O3 Interrupt Control Register	S3IC	
0049h	INT4 Interrupt Control Register	INT4IC	XX00x000b
004Ah	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
004Bh	DMAO Interrupt Control Register	DMOIC	XXXXX000b
004Ch	DMA1 Interrupt Control Register	DM1IC	XXXXX000b
004Dh	CANO Error Interrupt Control Register	C01ERRIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Eh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Fh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
0050h	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h	Timer A0 Interrupt Control Register	TAOIC	XXXXX000b
0056h	Timer A1 Interrupt Control Register	TA1IC	XXXXX000b
0057h	Timer A2 Interrupt Control Register	TA2IC	
0057h	INT7 Interrupt Control Register (1)	INT7IC	XX00X000b
0058h	Timer A3 Interrupt Control Register	TA3IC	
0058h	INT6 Interrupt Control Register (1)	INT6IC	XX00X000b
0059h	Timer A4 Interrupt Control Register	TA4IC	XXXXX000b
005Ah	Timer B0 Interrupt Control Register	TBOIC	
005Ah	SI/O6 Interrupt Control Register (1)	S6IC	XXXXX000b
	Timer B1 Interrupt Control Register	TB1IC	
005Bh	INT8 Interrupt Control Register (1)	INT8IC	XX00X000b
005Ch	Timer B2 Interrupt Control Register	TB2IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Fh	INT2 Interrupt Control Register	INT2IC	XX00X000b
0060h			XXh
0061h			XXh
0062h			XXh
0063h	CANo Message Box 0: Identifier / DLC		XXh
0064h			XXh
0065h			XXh
0066h			XXh
0067h			XXh
0068h			XXh
0069h			XXh
006Ah	CANO Message Box 0: Data Field		XXh
006Bh			XXh
006Ch			XXh
006Dh			XXh
006Eh			XXh
006Fh	CANO Message Box 0: Time Stamp		XXh
0070h	CANO Message Box 1: Identifier / DLC		XXh
0071h			XXh
0072h			XXh
0073h			XXh
0074h			XXh
0075h			XXh
0076h	CAN0 Message Box 1: Data Field		XXh
0077h			XXh
0078h			XXh
0079h			XXh
007Ah			XXh
007Bh			XXh
007Ch			XXh
007Dh			XXh
007Eh	CAN0 Message Box 1: Time Stamp		XXh
007Fh			XXh

X : Undefined

NOTES:

1. These registers exist only in the 128 -pin version.
2. Blank spaces are reserved. No access is allowed.

Table 4.3 SFR Information (3)

Address	Register	Symbol	After Reset
0080h	CAN0 Message Box 2: Identifier / DLC		XXh
0081h			XXh
0082h			XXh
0083h			XXh
0084h			XXh
0085h			XXh
0086h	CANO Message Box 2: Data Field		XXh
0087h			XXh
0088h			XXh
0089h			XXh
008Ah			XXh
008Bh			XXh
008Ch			XXh
008Dh			XXh
008Eh	CAN0 Message Box 2: Time Stamp		XXh
008Fh			XXh
0090h	CANO Message Box 3: Identifier / DLC		XXh
0091h			XXh
0092h			XXh
0093h			XXh
0094h			XXh
0095h			XXh
0096h	CANO Message Box 3: Data Field		XXh
0097h			XXh
0098h			XXh
0099h			XXh
009Ah			XXh
009Bh			XXh
009Ch			XXh
009Dh			XXh
009Eh	CAN0 Message Box 3: Time Stamp		XXh
009Fh			XXh
00AOh	CANO Message Box 4: Identifier / DLC		XXh
00A1h			XXh
00A2h			XXh
00A3h			XXh
00A4h			XXh
00A5h			XXh
00A6h	CANO Message Box 4: Data Field		XXh
00A7h			XXh
00A8h			XXh
00A9h			XXh
00AAh			XXh
00ABh			XXh
00ACh			XXh
00ADh			XXh
00AEh	CANO Message Box 4: Time Stamp		XXh
00AFh			XXh
00B0h	CANO Message Box 5: Identifier / DLC		XXh
00B1h			XXh
00B2h			XXh
00B3h			XXh
00B4h			XXh
00B5h			XXh
00B6h	CANO Message Box 5: Data Field		XXh
00B7h			XXh
00B8h			XXh
00B9h			XXh
00BAh			XXh
00BBh			XXh
00BCh			XXh
00BDh			XXh
00BEh	CAN0 Message Box 5: Time Stamp		XXh
00BFh			XXh

X : Undefined

Table 4.4 SFR Information (4)

Address	Register	Symbol	After Reset
00C0h	CANO Message Box 6: Identifier / DLC		XXh
00C1h			XXh
00C2h			XXh
00C3h			XXh
00C4h			XXh
00C5h			XXh
00C6h	CANO Message Box 6: Data Field		XXh
00C7h			XXh
00C8h			XXh
00C9h			XXh
00CAh			XXh
00CBh			XXh
00CCh			XXh
00CDh			XXh
00CEh	CANO Message Box 6: Time Stamp		XXh
00CFh			XXh
00DOh	CAN0 Message Box 7: Identifier / DLC		XXh
00D1h			XXh
00D2h			XXh
00D3h			XXh
00D4h			XXh
00D5h			XXh
00D6h	CANO Message Box 7: Data Field		XXh
00D7h			XXh
00D8h			XXh
00D9h			XXh
00DAh			XXh
00DBh			XXh
00DCh			XXh
00DDh			XXh
00DEh	CAN0 Message Box 7: Time Stamp		XXh
00DFh			XXh
00EOh	CAN0 Message Box 8: Identifier / DLC		XXh
00E1h			XXh
00E2h			XXh
00E3h			XXh
00E4h			XXh
00E5h			XXh
00E6h	CANO Message Box 8: Data Field		XXh
00E7h			XXh
00E8h			XXh
00E9h			XXh
00EAh			XXh
00EBh			XXh
00ECh			XXh
00EDh			XXh
00EEh	CAN0 Message Box 8: Time Stamp		XXh
00EFh			XXh
00FOh	CAN0 Message Box 9: Identifier / DLC		XXh
00F1h			XXh
00F2h			XXh
00F3h			XXh
00F4h			XXh
00F5h			XXh
00F6h	CANO Message Box 9: Data Field		XXh
00F7h			XXh
00F8h			XXh
00F9h			XXh
00FAh			XXh
00FBh			XXh
00FCh			XXh
00FDh			XXh
00FEh	CANO Message Box 9: Time Stamp		XXh
00FFh			XXh

X: Undefined

Table 4.5 SFR Information (5)

Address	Register	Symbol	After Reset
0100h	CAN0 Message Box 10: Identifier / DLC		XXh
0101h			XXh
0102h			XXh
0103h			XXh
0104h			XXh
0105h			XXh
0106h	CAN0 Message Box 10: Data Field		XXh
0107h			XXh
0108h			XXh
0109h			XXh
010Ah			XXh
010Bh			XXh
010Ch			XXh
010Dh			XXh
010Eh	CAN0 Message Box 10: Time Stamp		XXh
010Fh			XXh
0110h	CANO Message Box 11: Identifier / DLC		XXh
0111h			XXh
0112h			XXh
0113h			XXh
0114h			XXh
0115h			XXh
0116h	CAN0 Message Box 11: Data Field		XXh
0117h			XXh
0118h			XXh
0119h			XXh
011Ah			XXh
011Bh			XXh
011Ch			XXh
011Dh			XXh
011Eh	CANO Message Box 11: Time Stamp		XXh
011Fh			XXh
0120h	CAN0 Message Box 12: Identifier / DLC		XXh
0121h			XXh
0122h			XXh
0123h			XXh
0124h			XXh
0125h			XXh
0126h	CANO Message Box 12: Data Field		XXh
0127h			XXh
0128h			XXh
0129h			XXh
012Ah			XXh
012Bh			XXh
012Ch			XXh
012Dh			XXh
012Eh	CAN0 Message Box 12: Time Stamp		XXh
012Fh			XXh
0130h	CAN0 Message Box 13: Identifier / DLC		XXh
0131h			XXh
0132h			XXh
0133h			XXh
0134h			XXh
0135h			XXh
0136h	CAN0 Message Box 13: Data Field		XXh
0137h			XXh
0138h			XXh
0139h			XXh
013Ah			XXh
013Bh			XXh
013Ch			XXh
013Dh			XXh
013Eh	CAN0 Message Box 13: Time Stamp		XXh
013Fh			XXh

X : Undefined

Table 4.6 SFR Information (6) ${ }^{(1)}$

Address	Register	Symbol	After Reset
0140h	CANO Message Box 14: Identifier /DLC		XXh
0141h			XXh
0142h			XXh
0143h			XXh
0144h			XXh
0145h			XXh
0146h	CANO Message Box 14: Data Field		XXh
0147h			XXh
0148h			XXh
0149h			XXh
014Ah			XXh
014Bh			XXh
014Ch			XXh
014Dh			XXh
014Eh	CAN0 Message Box 14: Time Stamp		XXh
014Fh			XXh
0150h	CANO Message Box 15: Identifier /DLC		XXh
0151h			XXh
0152h			XXh
0153h			XXh
0154h			XXh
0155h			XXh
0156h	CANO Message Box 15: Data Field		XXh
0157h			XXh
0158h			XXh
0159h			XXh
015Ah			XXh
015Bh			XXh
015Ch			XXh
015Dh			XXh
015Eh	CAN0 Message Box 15: Time Stamp		XXh
015Fh			XXh
0160h	CANO Global Mask Register	COGMR	XXh
0161h			XXh
0162h			XXh
0163h			XXh
0164h			XXh
0165h			XXh
0166h	CANO Local Mask A Register	COLMAR	XXh
0167h			XXh
0168h			XXh
0169h			XXh
016Ah			XXh
016Bh			XXh
016Ch	CANO Local Mask B Register	COLMBR	XXh
016Dh			XXh
016Eh			XXh
016Fh			XXh
0170h			XXh
0171h			XXh
0172h			
0173h			
0174h			
0175h			
0176h			
0177h			
0178h			
0179h			
017Ah			
017Bh			
017Ch			
017Dh			
017Eh			
017Fh			

X: Undefined
NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.7 SFR Information (7) ${ }^{(2)}$

Address	Register	Symbol	After Reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h			
01B4h			
01B5h	Flash Memory Control Register $1{ }^{(1)}$	FMR1	0X00XX0Xb
01B6h			
01B7h	Flash Memory Control Register $0{ }^{(1)}$	FMR0	00000001b
01B8h			00h
01B9h	Address Match Interrupt Register 2	RMAD2	00h
01BAh			XOh
01BBh	Address Match Interrupt Enable Register 2	AIER2	XXXXXX00b
01BCh			00h
01BDh	Address Match Interrupt Register 3	RMAD3	00h
01BEh			XOh
01BFh			

X : Undefined

NOTES:

1. These registers are included in the flash memory version. Cannot be accessed by users in the mask ROM version
2. Blank spaces are reserved. No access is allowed.

Table 4.8 SFR Information (8) ${ }^{(3)}$

Address	Register	Symbol	After Reset
01C0h	Timer B3, B4, B5 Count Start Flag	TBSR	000XXXXXb
01C1h			
01C2h			XXh
01C3h	Timer A1-1 Register	TA11	XXh
01C4h			XXh
01C5h	Timer A2-1 Register	TA21	XXh
01C6h			XXh
01C7h	Timer A4-1 Register	TA41	XXh
01C8h	Three-Phase PWM Control Register 0	INVC0	00h
01C9h	Three-Phase PWM Control Register 1	INVC1	00h
01CAh	Three-Phase Output Buffer Register 0	IDB0	00111111b
01CBh	Three-Phase Output Buffer Register 1	IDB1	00111111b
01CCh	Dead Time Timer	DTT	XXh
01CDh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
01CEh			
01CFh	Interrupt Source Select Register 2	IFSR2	X0000000b
01D0h	Timer B3 Register	TB3	XXh
01D1h	Timer B3 Register	TB3	XXh
01D2h	Timer B4 Register	TB4	XXh
01D3h	Timer B4 Register	TB4	XXh
01D4h	Timer B5 Register	TB5	XXh
01D5h	Timer B5 Register		XXh
01D6h	SI/O6 Transmit/Receive Register (1)	S6TRR	XXh
01D7h			
01D8h	SI/O6 Control Register (1)	S6C	01000000b
01D9h	SI/O6 Bit Rate Register (1)	S6BRG	XXh
01DAh	SI/O3, 4, 5, 6 Transmit/Receive Register (2)	S3456TRR	XXXX0000b
01DBh	Timer B3 Mode Register	TB3MR	00XX0000b
01DCh	Timer B4 Mode Register	TB4MR	00XX0000b
01DDh	Timer B5 Mode Register	TB5MR	00XX0000b
01DEh	Interrupt Source Select Register 0	IFSR0	00h
01DFh	Interrupt Source Select Register 1	IFSR1	00h
01E0h	SI/O3 Transmit/Receive Register	S3TRR	XXh
01E1h			
01E2h	SI/O3 Control Register	S3C	01000000b
01E3h	SI/O3 Bit Rate Register	S3BRG	XXh
01E4h	SI/O4 Transmit/Receive Register	S4TRR	XXh
01E5h			
01E6h	SI/O4 Control Register	S4C	01000000b
01E7h	SI/O4 Bit Rate Register	S4BRG	XXh
01E8h	SI/O5 Transmit/Receive Register (1)	S5TRR	XXh
01E9h			
01EAh	SI/O5 Control Register (1)	S5C	01000000b
01EBh	SI/O5 Bit Rate Register ${ }^{(1)}$	S5BRG	XXh
01ECh	UART0 Special Mode Register 4	U0SMR4	00h
01EDh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
01EEh	UART0 Special Mode Register 2	U0SMR2	X0000000b
01EFh	UARTO Special Mode Register	UOSMR	X0000000b
01FOh	UART1 Special Mode Register 4	U1SMR4	00h
01F1h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
01F2h	UART1 Special Mode Register 2	U1SMR2	X0000000b
01F3h	UART1 Special Mode Register	U1SMR	X0000000b
01F4h	UART2 Special Mode Register 4	U2SMR4	00h
01F5h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
01F6h	UART2 Special Mode Register 2	U2SMR2	X0000000b
01F7h	UART2 Special Mode Register	U2SMR	X0000000b
01F8h	UART2 Transmit/Receive Mode Register	U2MR	00h
01F9h	UART2 Bit Rate Register	U2BRG	XXh
01FAh	UART2 Transmit Buffer Register	U2TB	XXh
01FBh			XXh
01FCh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
01FDh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
01FEh	UART2 Receive Buffer Register	U2RB	XXh
01FFh			XXh

X : Undefined

NOTES:

1. These registers exist only in the 128-pin version.
2. Bits S5TRF and S6TRF in the S3456TRR register are used in the 128-pin version.
3. Blank spaces are reserved. No access is allowed.

Table 4.9 SFR Information (9) ${ }^{(1)}$

Address	Register	Symbol	After Reset
0200h	CAN0 Message Control Register 0	COMCTLO	00h
0201h	CAN0 Message Control Register 1	C0MCTL1	00h
0202h	CANO Message Control Register 2	C0MCTL2	00h
0203h	CANO Message Control Register 3	COMCTL3	00h
0204h	CAN0 Message Control Register 4	COMCTL4	00h
0205h	CAN0 Message Control Register 5	C0MCTL5	00h
0206h	CANO Message Control Register 6	C0MCTL6	00h
0207h	CAN0 Message Control Register 7	C0MCTL7	00h
0208h	CAN0 Message Control Register 8	C0MCTL8	00h
0209h	CAN0 Message Control Register 9	C0MCTL9	00h
020Ah	CANO Message Control Register 10	C0MCTL10	00h
020Bh	CANO Message Control Register 11	C0MCTL11	00h
020Ch	CANO Message Control Register 12	C0MCTL12	00h
020Dh	CANO Message Control Register 13	C0MCTL13	00h
020Eh	CANO Message Control Register 14	C0MCTL14	00h
020Fh	CANO Message Control Register 15	C0MCTL15	00h
0210h	CANO Control Register	COCTLR	X0000001b
0211h	CANO Control Register	COCTLR	XX0X0000b
0212h	CAN0 Status Register	COSTR	00h
0213h	CANO Status Register	COSTR	X0000001b
0214h	CANO Slot Status Register	COSSTR	00h
0215h	CANO Slot Status Register	COSSTR	00h
0216h	CANO Interrupt Control Register	COICR	00h
0217h	CANO Interrupt Control Register	COICR	00h
0218h	CANO Extended ID Register	COIDR	00h
0219h	CANO Extended ID Register	COIDR	00h
021Ah	CANO Configuration Register	COCONR	XXh
021Bh	CANO Configuration Register	COCONR	XXh
021Ch	CANO Receive Error Count Register	CORECR	00h
021Dh	CANO Transmit Error Count Register	COTECR	00h
021Eh	CAN0 Time Stamp Register	COTSR	00h
021Fh	CANO Time Stamp Register		00h
0220h			
0221h			
0222h			
0223h			
0224h			
0225h			
0226h			
0227h			
0228h			
0229h			
022Ah			
022Bh			
022Ch			
022Dh			
022Eh			
022Fh			
0230h			X0000001b
0231h	CAN1 Control Register	CICTLR	XX0X0000b
0232h			
0233h			
0234h			
0235h			
0236h			
0237h			
0238h			
0239h			
023Ah			
023Bh			
023Ch			
023Dh			
023Eh			
023Fh			

X: Undefined
NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.10 SFR Information (10) ${ }^{(1)}$

Address	Register	Symbol	After Reset
0240h			
0241h			
0242h	NO Acceptance Filter Support Register	COAFS	XXh
0243h	N0 Acceptance Filter Support Register	COAFS	XXh
0244h			
0245h			
0246h			
0247h			
0248h			
0249h			
024Ah			
024Bh			
024Ch			
024Dh			
024Eh			
024Fh			
0250h			
0251h			
0252h			
0253h			
0254h			
0255h			
0256h			
0257h			
0258h			
0259h			
025Ah			
025Bh			
025Ch			
025Dh			
025Eh	Peripheral Clock Select Register	PCLKR	00h
025Fh	CANO Clock Select Register	CCLKR	00h
0260h			
0261h			
0262h			
0263h			
0264h			
0265h			
0266h			
0267h			
0268h			
0269h			
026Ah			
026Bh			
026Ch			
026Dh			
026Eh			
026Fh			
$\begin{gathered} \text { 0270h } \\ \text { to } \\ 0372 \mathrm{~h} \\ \hline \end{gathered}$			
0373h			
0374h			
0375h			
0376h			
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch			
037Dh			
037Eh			
037Fh			

X: Undefined
NOTE:

1. Blank spaces are reserved. No access is allowed.

Table 4.11 SFR Information (11) ${ }^{(2)}$

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	00h
0381h	Clock Prescaler Reset Flag	CPSRF	0XXXXXXXb
0382h	One-Shot Start Flag	ONSF	00h
0383h	Trigger Select Register	TRGSR	00h
0384h	Up/Down Flag	UDF	00h (1)
0385h			
0386h	Timer A0 Register		XXh
0387h	Timer A0 Register	TAO	XXh
0388h	Timer A1 Register		XXh
0389h	Timer A1 Register	TA1	XXh
038Ah	Timer A2 Register		XXh
038Bh	Timer A2 Register	TA2	XXh
038Ch	Timer A3 Register		XXh
038Dh	Timer A3 Register	TA3	XXh
038Eh	Timer A4 Register		XXh
038Fh	Timer A4 Register	TA4	XXh
0390h	Timer B0 Register		XXh
0391h	Timer B0 Register	TBO	XXh
0392h	Timer B1 Register		XXh
0393h	Timer B1 Register	TB1	XXh
0394h	Timer B2 Register		XXh
0395h	Timer B2 Register	TB2	XXh
0396h	Timer A0 Mode Register	TAOMR	00h
0397h	Timer A1 Mode Register	TA1MR	00h
0398h	Timer A2 Mode Register	TA2MR	00h
0399h	Timer A3 Mode Register	TA3MR	00h
039Ah	Timer A4 Mode Register	TA4MR	00h
039Bh	Timer B0 Mode Register	TBOMR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh	Timer B2 Special Mode Register	TB2SC	XXXXXX00b
039Fh			
03A0h	UART0 Transmit/Receive Mode Register	UOMR	00h
03A1h	UART0 Bit Rate Register	U0BRG	XXh
03A2h	UART0 Transmit Buffer Register	UOTB	XXh
03A3h	UARTO Transmit Buffer Register	UOTB	XXh
03A4h	UARTO Transmit/Receive Control Register 0	UOC0	00001000b
03A5h	UARTO Transmit/Receive Control Register 1	U0C1	00XX0010b
03A6h	UART0 Receive Buffer Register	U0RB	XXh
03A7h			XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Register	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh			XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00XX0010b
03AEh	UART1 Receive Buffer Register	U1RB	XXh
03AFh			XXh
03B0h	UART Transmit/Receive Control Register 2	UCON	X0000000b
03B1h			
03B2h			
03B3h			
03B4h			
03B5h			
03B6h			
03B7h			
03B8h	DMA0 Request Source Select Register	DMOSL	00h
03B9h			
03BAh	DMA1 Request Source Select Register	DM1SL	00h
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh			XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			

X : Undefined
NOTES:

1. Bits TA2P to TA4P in the UDF register are set to 0 after reset. However, the contents in these bits are undefined when read.
2. Blank spaces are reserved. No access is allowed.

Table 4.12 SFR Information (12) ${ }^{(3)}$

X: Undefined
NOTES:

1. At hardware reset, the register is as follows:

- 00000000b where "L" is input to the CNVSS pin
- 00000010b where " H " is input to the CNVSS pin

At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:
. 00000000b where the PM01 to PM00 bits in the PM0 register are 00b (single-chip mode)

- 00000010b where the PM01 to PM00 bits in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode)

2. These registers exist only in the 128 -pin version.
3. Blank spaces are reserved. No access is allowed.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol				Condition	Rated Value	Unit
V cc	Supply voltage (VCC1 = VCC2)			VCC = AVCC	-0.3 to 6.5	V
AV ${ }_{\text {cc }}$	Analog supply voltage			VCC = AVCC	-0.3 to 6.5	V
V I	Input voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, VREF, XIN			-0.3 to VCC+0.3	V
		P7_1, P9_1			-0.3 to 6.5	V
Vo	Output voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XOUT			-0.3 to VCC +0.3	V
		P7_1, P9_1			-0.3 to 6.5	V
Pd_{d}	Power dissipation			Topr $=25^{\circ} \mathrm{C}$	700	mW
$\mathrm{T}_{\text {opr }}$	Operating ambient temperature		Durin		-40 to 85	${ }^{\circ} \mathrm{C}$
					0 to 60	
$\mathrm{T}_{\text {stg }}$	Storage temperature				-65 to 150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Ports P11 to P14 are only in the 128-pin version.

Table 5.2 Recommended Operating Conditions (1) ${ }^{(1)}$

Symbol	Parameter		Standard			Unit
			Min.	Typ.	Max.	
V cc	Supply voltage (VCC1 = VCC2)		3.0	5.0	5.5	V
AVcc	Analog supply voltage			Vcc		V
Vss	Supply voltage			0		V
AV ${ }_{\text {ss }}$	Analog supply voltage			0		V
$\mathrm{V}_{\text {IH }}$	HIGH input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE	0.8 Vcc		Vcc	V
		P7_1, P9_1	0.8 Vcc		6.5	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (During single-chip mode)	0.8 Vcc		Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (Data input during memory expansion and microprocessor modes)	0.5 Vcc		Vcc	
VIL	LOW input voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1, XIN, RESET, CNVSS, BYTE	0		0.2 Vcc	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (During single-chip mode)	0		0.2 Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (Data input during memory expansion and microprocessor modes)	0		0.16 V cc	V
ІОН(peak)	HIGH peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			-10.0	mA
IoH(avg)	HIGH average output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0, P9_2 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			-5.0	mA
IoL(peak)	LOW peak output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			10.0	mA
IoL(avg)	LOW average output current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1			5.0	mA

NOTES:

1. Referenced to $\mathrm{VCC}=3.0$ to 5.5 V at $\mathrm{Topr}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.
2. Average output current values during 100 ms period.
3. The total lol(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be 80 mA max.

The total lol(peak) for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80 mA max.
The total IoH(peak) for ports P0, P1, and P2 must be -40 mA max.
The total lon(peak) for ports P3, P4, P5, P12, and P13 must be -40 mA max.
The total loH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40 mA max.
The total loн(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40 mA max.
4. P11 to P14 are only in the 128-pin version.

Table 5.3 Recommended Operating Conditions (2) ${ }^{(1)}$

Symbol	Parameter				Standard			Unit
					Min.	Typ.	Max.	
f (XIN)	Main clock input oscillation frequency ${ }^{(2)}{ }^{(3)}$ (4)	No wai	Mask ROM version Flash memory version	$\mathrm{VCC}=3.0$ to 5.5 V	0		16	MHz
f(XCIN)	Sub clock oscillation frequency					32.768	50	kHz
f(Ring)	On-chip oscillation frequency					1		MHz
f(PLL)	PLL clock oscillation frequency				16		24	MHz
f(BCLK)	CPU operation clock			$\mathrm{VCC}=3.0$ to 5.5 V	0		24	MHz
tsu(PLL)	PLL frequency synthesizer stabilization wait time						20	ms

NOTES:

1. Referenced to $\mathrm{VCC}=3.0$ to 5.5 V at $\mathrm{Topr}=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.
2. Relationship between main clock oscillation frequency and supply voltage is shown right.
3. Execute program/erase of flash memory by $\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}$ or $V C C=5.0 \pm 0.5 \mathrm{~V}$.
4. When using 16 MHz and over, use PLL clock. PLL clock oscillation frequency which can be used is $16 \mathrm{MHz}, 20 \mathrm{MHz}$ or 24 MHz .

Table 5.4 Electrical Characteristics (1) ${ }^{(1)}$
VCC $=5 \mathrm{~V}$

NOTES:

1. Referenced to $\mathrm{VCC}=4.2$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}$ at Topr $=-40$ to $85^{\circ} \mathrm{C}, f(B C L K)=24 \mathrm{MHz}$ unless otherwise specified.
2. P11 to P14, INT6 to INT8, CLK5, CLK6, SIN5, and SIN6 are only in the 128-pin version.

Table 5.5 Electrical Characteristics (2) ${ }^{(1)}$

NOTES:

1. Referenced to $\mathrm{VCC}=3.0$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}$ at $\mathrm{Topr}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{BCLK})=24 \mathrm{MHz}$ unless otherwise specified.
2. This indicates the memory in which the program to be executed exists.
3. With one timer operated using fC32.

Table 5.6 A/D Conversion Characteristics ${ }^{(1)}$

Symbol	Parameter		Measuring Condition		Standard			Unit		
			Min.	Typ.	Max.					
-	Resolution				VREF = VCC				10	Bit
INL	Integral nonlinearity error	10 bits	VREF ANEXO, ANEX1 input, AN0 to AN7 input, $=$ VCC ANO_0 to ANO_7 input, AN2_0 to AN2_7 input				± 3	LSB		
			$=5 \mathrm{~V}$				± 7	LSB		
			$\begin{aligned} & \text { VREF } \\ & =\mathrm{VC} \\ & =3.3 \end{aligned}$	ANEXO, ANEX1 input, AN0 to AN7 input, ANO_0 to ANO_7 input, AN2_0 to AN2_7 input			± 5	LSB		
				External operation amp connection mode			± 7	LSB		
		8 bits	VREF = AVCC = VCC $=3.3 \mathrm{~V}$				± 2	LSB		
-	Absolute accuracy	10 bits	VREF ANEX0, ANEX1 input, AN0 to AN7 input, $=$ VCC ANO_0 to ANO_7 input, AN2_0 to AN2_7 input				± 3	LSB		
			$=5 \mathrm{~V}$	External operation amp connection mode			± 7	LSB		
			$\begin{aligned} & \text { VREF } \\ & =\mathrm{VCO} \\ & =3.3 \end{aligned}$	ANEX0, ANEX1 input, AN0 to AN7 input, ANO_0 to ANO_7 input, AN2_0 to AN2_7 input			± 5	LSB		
				External operation amp connection mode			± 7	LSB		
		8 bits	$\mathrm{VREF}=\mathrm{AVCC}=\mathrm{VCC}=3.3 \mathrm{~V}$				± 2	LSB		
DNL	Differential nonlinearity error						± 1	LSB		
-	Offset error						± 3	LSB		
-	Gain error						± 3	LSB		
Rladder	Resistor ladder		VREF = VCC		10		40	k Ω		
tconv	10-bit conversion time, sample \& hold available		VREF $=\mathrm{VCC}=5 \mathrm{~V}, \phi \mathrm{AD}=10 \mathrm{MHz}$		3.3			$\mu \mathrm{s}$		
	8 -bit conversion time, sample \& hold available		$\mathrm{VREF}=\mathrm{VCC}=5 \mathrm{~V}, \phi \mathrm{AD}=10 \mathrm{MHz}$		2.8			$\mu \mathrm{s}$		
tsamp	Sampling time				0.3			$\mu \mathrm{s}$		
V ${ }_{\text {ReF }}$	Reference voltage				2.0		Vcc	V		
VIA	Analog input voltage				0		Vref	V		

NOTES:

1. Referenced to $\mathrm{VCC}=\mathrm{AVCC}=\mathrm{VREF}=3.3$ to 5.5 V , $\mathrm{VSS}=\mathrm{AVSS}=0 \mathrm{~V},-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.
2. $\phi A D$ frequency must be 10 MHz or less.
3. When sample \& hold is disabled, ϕ AD frequency must be 250 kHz or more in addition to a limit of NOTE 2. When sample \& hold is enabled, фAD frequency must be 1 MHz or more in addition to a limit of NOTE 2.

Table 5.7 D/A conversion Characteristics ${ }^{(1)}$

Symbol	Parameter	Measuring Condition	Standard			Unit
			Min.	Typ.	Max.	
-	Resolution				8	Bits
-	Absolute accuracy				1.0	\%
tsu	Setup time				3	$\mu \mathrm{s}$
Ro	Output resistance		4	10	20	k Ω
Ivref	Reference power supply input current	(NOTE 2)			1.5	mA

NOTES:

1. Referenced to $\mathrm{VCC}=\mathrm{AVCC}=\mathrm{VREF}=3.3$ to 5.5 V , $\mathrm{VSS}=\mathrm{AVSS}=0 \mathrm{~V},-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.
2. This applies when using one D/A converter, with the DAi register ($\mathrm{i}=0,1$) for the unused D/A converter set to 00h. The resistor ladder of the A/D converter is not included. Also, the IvreF will flow even if VREF is disconnected by the ADCON1 register.

Table 5.8 Flash Memory Version Electrical Characteristics ${ }^{(1)}$

Symbol	Parameter		Standard			Unit
			Min.	Typ.	Max.	
-	Programming and erasure endurance ${ }^{(2)}$		100			cycle
-	Word program time (VCC = 5.0 V)			25	200	$\mu \mathrm{s}$
-	Lock bit program time			25	200	$\mu \mathrm{s}$
-	Block erase time$(\mathrm{VCC}=5.0 \mathrm{~V})$	4-Kbyte block		0.3	4	S
		8-Kbyte block		0.3	4	S
		32-Kbyte block		0.5	4	s
		64-Kbyte block		0.8	4	s
-	Erase all unlocked blocks time				$4 \times \mathrm{n}^{(3)}$	s
tps	Flash memory circuit stabilization wait time				15	$\mu \mathrm{s}$

NOTES:

1. Referenced to $\mathrm{VCC}=4.5$ to $5.5 \mathrm{~V}, 3.0$ to 3.6 V , $\mathrm{Topr}=0$ to $60^{\circ} \mathrm{C}$ unless otherwise specified.
2. Programming and erasure endurance refers to the number of times a block erase can be performed. If the programming and erasure endurance is $n(n=100)$, each block can be erased n times. For example, if a 4-Kbyte block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one programming and erasure endurance. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).
3. n denotes the number of blocks to erase.

Table 5.9 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr $=0$ to $60^{\circ} \mathrm{C}$)

Flash Program, Erase Voltage	Flash Read Operation Voltage
$\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}$ or $5.0 \pm 0.5 \mathrm{~V}$	$\mathrm{VCC}=3.0$ to 5.5 V

Table 5.10 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Measuring Condition	Standard			Unit
			Min.	Typ.	Max.	
$\mathrm{td}_{\text {(P-R }}$)	Time for internal power supply stabilization during powering-on	$\mathrm{VCC}=3.0$ to 5.5 V			2	ms
$\mathrm{ta}_{(\text {(R-S) }}$	STOP release time				150	$\mu \mathrm{s}$
$\mathrm{td}(\mathrm{W}-\mathrm{S})$	Low power dissipation mode wait mode release time				150	$\mu \mathrm{s}$

$\mathrm{t}_{\mathrm{d}(\mathrm{P}-\mathrm{R})}$ Time for internal power supply stabilization during powering-on	
$\mathrm{t}_{\mathrm{d}}(\mathrm{R}-\mathrm{S})$ STOP release time td(w-s) Low power dissipation mode wait mode release time	Interrupt for (a) Stop mode release (b) Wait mode release CPU clock (a)

Figure 5.1 Power Supply Circuit Timing Diagram

Timing Requirements
(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5.11 External Clock Input (XIN Input)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
t_{c}	External clock input cycle time	62.5		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{H})}$	External clock input HIGH pulse width	25		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{L})}$	External clock input LOW pulse width	25		ns
t_{r}	External clock rise time		15	ns
t_{f}	External clock fall time		15	ns

Table 5.12 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(D-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	$\overline{\text { RDY }}$ input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HoLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-45[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:
$\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-45[\mathrm{~ns}] \quad \mathrm{n}$ is " 2 " for 1 -wait setting, " 3 " for 2 -wait setting and " 4 " for 3 -wait setting.
3. Calculated according to the BCLK frequency as follows:
$\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-45[\mathrm{~ns}] \quad \mathrm{n}$ is " 2 " for 2-wait setting, " 3 " for 3-wait setting.

Timing Requirements
(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.13 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {c(TA })}$	TAilN input cycle time	100		ns
$\mathrm{t}_{\text {w(TAH })}$	TAilN input HIGH pulse width	40		ns
$\mathrm{t}_{\text {w(TAL })}$	TAilN input LOW pulse width	40		ns

Table 5.14 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}_{\text {(TA) }}$	TAilN input cycle time	400		ns
$\mathrm{tw}_{\text {(TAH) }}$	TAilN input HIGH pulse width	200		ns
$\mathrm{t}_{\mathrm{w} \text { (TAL) }}$	TAilN input LOW pulse width	200		ns

Table 5.15 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TA})}$	TAilN input cycle time	200		
$\mathrm{t}_{\mathrm{w}(\mathrm{TAH})}$	TAilN input HIGH pulse width	ns		
$\mathrm{t}_{\mathrm{w}(\mathrm{TAL})}$	TAilN input LOW pulse width	100		ns

Table 5.16 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {w(TAH })}$	TAilN input HIGH pulse width	100		ns
$\mathrm{t}_{\text {w(TAL })}$	TAilN input LOW pulse width	100		ns

Table 5.17 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tc(UP)	TAiOUT input cycle time	2000		ns
tw(UPH)	TAiOUT input HIGH pulse width	1000		ns
$\mathrm{tw}_{\text {(UPL) }}$	TAiOUT input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiOUT input setup time	400		ns
th(Tin-UP)	TAiOUT input hold time	400		ns

Table 5.18 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {c(TA })}$	TAilN input cycle time	800		ns
$\mathrm{t}_{\text {su(TAIN-TAOUT) }}$	TAiOUT input setup time	200		ns
$\mathrm{t}_{\text {sul(TAOUT-TAIN })}$	TAilN input setup time	200		ns

Timing Requirements

(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.19 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{(\text {(TB })}$	TBilN input cycle time (counted on one edge)	100		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input HIGH pulse width (counted on one edge)	40		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width (counted on one edge)	40		ns
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input cycle time (counted on both edges)	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input HIGH pulse width (counted on both edges)	80		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width (counted on both edges)	80	ns	

Table 5.20 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathbf{c}(\text { TB })}$	TBiIN input cycle time	400		ns
$\mathrm{t}_{\mathbf{w}(\mathrm{TBH})}$	TBiIN input HIGH pulse width	200		ns
$\mathrm{t}_{\text {w }(\text { TBL })}$	TBiIN input LOW pulse width	200		ns

Table 5.21 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input cycle time	400		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBiIN input HIGH pulse width	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width	200		ns

Table 5.22 A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}(\mathrm{AD})}$	$\overline{\text { ADTRG input cycle time (trigger able minimum) }}$	1000		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{ADL})}$	$\overline{\text { ADTRG input LOW pulse width }}$	125		ns

Table 5.23 Serial Interface

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c} \text { (СK) }}$	CLKi input cycle time	200		ns
$\mathrm{t}_{\mathrm{w} \text { (CKH) }}$	CLKi input HIGH pulse width	100		ns
$\mathrm{tw}_{\text {w }}^{\text {CKL) }}$	CLKi input LOW pulse width	100		ns
$\mathrm{t}_{(1 \mathrm{C}-\mathrm{Q})}$	TXDi output delay time		80	ns
th(C-Q)	TXDi hold time	0		ns
tsu(D-C)	RXDi input setup time	70		ns
$\operatorname{tn}(\mathrm{C}-\mathrm{D})$	RXDi input hold time	90		ns

Table 5.24 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{w}(\mathrm{INH})}$	$\overline{\mathrm{INTi}}$ input HIGH pulse width	250		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{INL})}$	$\overline{\mathrm{INTi}}$ input LOW pulse width	250		ns

Switching Characteristics
(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5.25 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 5.2		25	ns
$\mathrm{th}_{\text {(BCLK-AD) }}$	Address output hold time (in relation to BCLK)		4		ns
$\mathrm{th}_{\text {(}}^{\text {RD-AD }}$)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
$\mathrm{th}_{\text {(BCLK-CS) }}$	Chip select output hold time (rin relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			15	ns
$\mathrm{th}_{\text {(BCLK-ALE) }}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
$\mathrm{th}_{\text {(BCLK-WR) }}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) ${ }^{(3)}$		4		ns
$\mathrm{ta}_{\text {(DB-WR) }}$	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (rin relation to WR) ${ }^{(3)}$		(NOTE 1)		ns
$\mathrm{ta}_{\text {(BCLK-HLDA) }}$	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{f(B C L K)}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{f(B C L K)}-40[\mathrm{~ns}] \quad f(B C L K) \text { is } 12.5 \mathrm{MHz} \text { or less. }
$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in

$t=-C R \times \ln \left(1-V_{o L} / V_{c c}\right)$
by a circuit of the right figure.
For example, when $\mathrm{Vol}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}$, $R=1 \mathrm{k} \Omega$, hold time of output " L " level is
$\mathrm{t}=-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln \left(1-0.2 \mathrm{Vcc} / \mathrm{V}_{\mathrm{cc}}\right)=6.7 \mathrm{~ns}$.

Figure 5.2 Port P0 to P14 Measurement Circuit

Switching Characteristics
(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.26 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
$\mathrm{t}_{\text {(BCLK-AD) }}$	Address output delay time	Figure 5.2		25	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$\mathrm{t}_{\text {d(BCLK-CS) }}$	Chip select output delay time			25	ns
$\mathrm{t}_{\text {(} \text { (BCLK-CS) }}$	Chip select output hold time (in relation to BCLK)		4		ns
$\mathrm{t}_{\mathrm{d} \text { (BCLK-ALE) }}$	ALE signal output delay time			15	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$\mathrm{td}_{\text {d(BCLK-WR) }}$	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
$\mathrm{t}_{\text {d(BCLK-DB) }}$	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (rin relation to BCLK) ${ }^{(3)}$		4		ns
	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) ${ }^{(3)}$		(NOTE 1)		ns
ta(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{f(B C L K)}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:

$$
\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-40[\mathrm{~ns}]
$$ n is " 1 " for 1 -wait setting, " 2 " for 2-wait setting and " 3 " for 3 -wait setting. When $n=1, f(B C L K)$ is 12.5 MHz or less.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
Hold time of data bus is expressed in

$\mathrm{t}=-\mathrm{CR} \times \ln \left(1-\mathrm{V}_{\mathrm{ol}} / \mathrm{V}_{\mathrm{cc}}\right)$
by a circuit of the right figure.
For example, when $\mathrm{VoL}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}$,
$R=1 \mathrm{k} \Omega$, hold time of output " L " level is
$\mathrm{t}=-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc})=6.7 \mathrm{~ns}$.

Switching Characteristics
(Referenced to VCC $=5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5.27 Memory Expansion Mode and Microprocessor Mode
(for 2- to 3-wait setting, external area access and multiplexed bus selection)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
$\mathrm{t}_{\text {d(BCLK-AD) }}$	Address output delay time	Figure 5.2		25	ns
t (BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
tn (RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		ns
tn (WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
$\mathrm{t}_{\text {d(BCLK-CS) }}$	Chip select output delay time			25	ns
tr (BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
th (RD-CS) $^{\text {(}}$	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (in relation to WR)		(NOTE 1)		ns
$\mathrm{t}_{\text {(}}$ (BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
$\mathrm{t}_{\text {d(BCLK-WR) }}$	WR signal output delay time			25	ns
t (BCLK-WR)	WR signal output hold time		0		ns
$\mathrm{t}_{\text {d(BCLK-DB) }}$	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK)		4		ns
$\mathrm{t}_{\text {d(DB-WR) }}$	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
$\mathrm{t}_{\text {d(BCLK-HLDA) }}$	HLDA output delay time			40	ns
$\mathrm{t}_{\text {(}}$ BCLK-ALE)	ALE signal output delay time (in relation to BCLK)			15	ns
tr (BCLK-ALE)	ALE signal output hold time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (in relation to Address)		(NOTE 3)		ns
th (ALE-AD)	ALE signal output hold time (in relation to Address)		(NOTE 4)		ns
$t_{\text {d (}}(\mathrm{DD}-\mathrm{RD})$	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdz(RD-AD)	Address output floating start time			8	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{f(B C L K)}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:

$$
\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-40[\mathrm{~ns}] \quad \mathrm{n} \text { is "2" for 2-wait setting, " } 3 \text { " for } 3 \text {-wait setting. }
$$

3. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-25[\mathrm{~ns}]
$$

4. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-15[\mathrm{~ns}]
$$

XIN input

TAilN input

TAiOUT input (Up/down input)

During event counter mode
TAilN input
(When count on falling edge
is selected)
TAilN input
(When count on rising edge
is selected)
Two-phase pulse input in event counter mode

Figure 5.3 Timing Diagram (1)

(Common to setting with wait and setting without wait)

NOTE:

1. The above pins are set to high-impedance regardless of the input level of the BYTE pin, the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.

Measuring conditions :

- $\mathrm{VCC}=5 \mathrm{~V}$
- Input timing voltage : Determined with $\mathrm{V}_{\mathrm{IL}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}}=4.0 \mathrm{~V}$
- Output timing voltage: Determined with Vol $=2.5 \mathrm{~V}, \mathrm{VoH}=2.5 \mathrm{~V}$

Figure 5.4 Timing Diagram (2)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=5 \mathrm{~V}$
(For setting with no wait)
Read timing

Write timing

Figure 5.5 Timing Diagram (3)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=5 \mathrm{~V}$
(For 1-wait setting and external area access)

Write timing

Figure 5.6 Timing Diagram (4)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=5 \mathrm{~V}$
(For 2-wait setting and external area access)
Read timing

Write timing

tcyc $=\frac{1}{f(\text { BCLK })}$
Measuring conditions :

- $\mathrm{VCC}=5 \mathrm{~V}$
- Input timing voltage : VIL $=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Output timing voltage : $\mathrm{VOL}=0.4 \mathrm{~V}, \mathrm{VOH}=2.4 \mathrm{~V}$

Figure 5.7 Timing Diagram (5)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=5 \mathrm{~V}$
(For 3-wait setting and external area access)
Read timing

Write timing

tcyc $=\frac{1}{f(\text { BCLK })}$
Measuring conditions :

- $\mathrm{VCC}=5 \mathrm{~V}$
- Input timing voltage : $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Output timing voltage : $\mathrm{Vol}=0.4 \mathrm{~V}, \mathrm{VOH}=2.4 \mathrm{~V}$

Figure 5.8 Timing Diagram (6)

Write timing

$\mathrm{tcyc}=\frac{1}{\mathrm{f}(\mathrm{BCLK})}$
Measuring conditions :

- $\mathrm{VCC}=5 \mathrm{~V}$
- Input timing voltage : VIL $=0.8 \mathrm{~V}, \mathrm{~V} \mathrm{VH}=2.0 \mathrm{~V}$
- Output timing voltage : Vol $=0.4 \mathrm{~V}, \mathrm{VOH}=2.4 \mathrm{~V}$

Figure 5.9 Timing Diagram (7)

Memory Expansion Mode and Microprocessor Mode

$\mathrm{VCC}=5 \mathrm{~V}$
(For 3-wait setting, external area access and multiplexed bus selection)
Read timing

Write timing

tcyc $=\frac{1}{f(\text { BCLK })}$
Measuring conditions :

- $\mathrm{VCC}=5 \mathrm{~V}$
- Input timing voltage: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Output timing voltage : $\mathrm{VOL}=0.4 \mathrm{~V}$, $\mathrm{VOH}=2.4 \mathrm{~V}$

Figure 5.10 Timing Diagram (8)

Table 5.28 Electrical Characteristics ${ }^{(1)}$
$\mathrm{VCC}=3.3 \mathrm{~V}$

NOTES:

1. Referenced to $\mathrm{VCC}=3.0$ to $3.6 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$ at $\mathrm{Topr}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{BCLK})=24 \mathrm{MHz}$ unless otherwise specified.
2. P11 to P14, INT6 to INT8, CLK5, CLK6, SIN5, and SIN6 are only in the 128-pin version.

Timing Requirements
VCC $=3.3 \mathrm{~V}$
(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5.29 External Clock Input (XIN Input)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
t_{c}	External clock input cycle time	62.5		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{H})}$	External clock input HIGH pulse width	25		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{L})}$	External clock input LOW pulse width	25		ns
t_{r}	External clock rise time		15	ns
t_{f}	External clock fall time		15	ns

Table 5.30 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Standard		Unit
		Min.	Max.	
tac1(RD-DB)	Data input access time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(NOTE 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplexed bus area)		(NOTE 3)	ns
tsu(D-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	$\overline{\text { RDY }}$ input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK-RDY)	RDY input hold time	0		ns
th(BCLK-HoLD)	HOLD input hold time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-60[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:
$\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-60[\mathrm{~ns}] \quad \mathrm{n}$ is " 2 " for 1 -wait setting, " 3 " for 2 -wait setting and " 4 " for 3 -wait setting.
3. Calculated according to the BCLK frequency as follows:
$\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-60[\mathrm{~ns}] \quad \mathrm{n}$ is " 2 " for 2-wait setting, " 3 " for 3 -wait setting.

Timing Requirements

(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.31 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{(\text {(TA })}$	TAilN input cycle time	150		ns
$\mathrm{t}_{\text {w(TAH })}$	TAilN input HIGH pulse width	60		ns
$\mathrm{t}_{\text {w }(\text { TAL })}$	TAilN input LOW pulse width	60		ns

Table 5.32 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c} \text { (TA) }}$	TAilN input cycle time	600		ns
$\mathrm{tw}_{\text {(TAH) }}$	TAilN input HIGH pulse width	300		ns
$\mathrm{t}_{\mathrm{w} \text { (TAL) }}$	TAilN input LOW pulse width	300		ns

Table 5.33 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {c(TA })}$	TAilN input cycle time	300		ns
$\mathrm{t}_{\text {w (TAH) }}$	TAilN input HIGH pulse width	150		ns
$\mathrm{t}_{\text {w(TAL })}$	TAilN input LOW pulse width	150		ns

Table 5.34 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {w(TAH })}$	TAilN input HIGH pulse width	150		ns
$\mathrm{t}_{\text {w(TAL })}$	TAilN input LOW pulse width	150		ns

Table 5.35 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {(UP) }}$	TAiOUT input cycle time	3000		ns
$\mathrm{t}_{\text {w(UPH })}$	TAiOUT input HIGH pulse width	1500		ns
$\mathrm{t}_{\text {w(UPL) }}$	TAiOUT input LOW pulse width	1500		ns
$\mathrm{t}_{\text {su(UP-TIN })}$	TAiOUT input setup time	600		ns
$\mathrm{t}_{\text {h(TIN-UP) }}$	TAiOUT input hold time	600		ns

Table 5.36 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\text {c(TA) }}$	TAilN input cycle time	2		$\mu \mathrm{~s}$
$\mathrm{t}_{\text {su(TAIN-TAOUT })}$	TAiOUT input setup time	500		ns
$\mathrm{t}_{\text {sul(TAOUT-TAIN })}$	TAilN input setup time	500		ns

Timing Requirements
(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)
Table 5.37 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{(\text {(TB })}$	TBilN input cycle time (counted on one edge)	150		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input HIGH pulse width (counted on one edge)	60		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width (counted on one edge)	60		ns
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input cycle time (counted on both edges)	300		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBilN input HIGH pulse width (counted on both edges)	120		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width (counted on both edges)	120	ns	

Table 5.38 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBiIN input cycle time	600		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBiIN input HIGH pulse width	300		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width	300		ns

Table 5.39 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{c}(\mathrm{TB})}$	TBilN input cycle time	600		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBH})}$	TBiIN input HIGH pulse width	300		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{TBL})}$	TBilN input LOW pulse width	300		ns

Table 5.40 A/D Trigger Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{C}(\mathrm{AD})}$	$\overline{\text { ADTRG input cycle time (trigger able minimum) }}$	1500		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{ADL})}$	$\overline{\text { ADTRG input LOW pulse width }}$	200		ns

Table 5.41 Serial Interface

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{tc}_{\mathrm{c} \text { (CK) }}$	CLKi input cycle time	300		ns
$\mathrm{tw}_{\text {(CKH) }}$	CLKi input HIGH pulse width	150		ns
$\mathrm{tw}_{\text {(CKL) }}$	CLKi input LOW pulse width	150		ns
$\mathrm{t}_{\mathrm{d}(\mathrm{C}-\mathrm{Q})}$	TXDi output delay time		160	ns
$\mathrm{th}_{(C-Q)}$	TXDi hold time	0		ns
$\mathrm{tsu}(\mathrm{D}-\mathrm{C})$	RXDi input setup time	100		ns
$\mathrm{th}_{\text {(}}(-\mathrm{D})$	RXDi input hold time	90		ns

Table 5.42 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	
$\mathrm{t}_{\mathrm{w}(\mathrm{INH})}$	$\overline{\mathrm{INTi}}$ input HIGH pulse width	380		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{INL})}$	$\overline{\mathrm{INTi}}$ input LOW pulse width	380		ns

Switching Characteristics
(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.43 Memory Expansion Mode and Microprocessor Mode (for setting with no wait)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 5.11		30	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-Cs)	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK) ${ }^{(3)}$		4		ns
$\mathrm{td}_{\text {d }}(\mathrm{DB}$-WR)	Data output delay time (in relation to WR)		(NOTE 2)		ns
$\mathrm{th}(\mathrm{WR}$ - DB)	Data output hold time (in relation to WR) ${ }^{(3)}$		(NOTE 1)		ns
td(BCLK-HLDA)	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:
$\frac{0.5 \times 10^{9}}{f(B C L K)}-40[n s] \quad f(B C L K)$ is 12.5 MHz or less.
3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in

$t=-C R \times \ln \left(1-V_{o L} / V_{c c}\right)$
by a circuit of the right figure.
For example, when $\mathrm{Vol}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}$, $R=1 \mathrm{k} \Omega$, hold time of output " L " level is
$\mathrm{t}=-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc})=6.7 \mathrm{~ns}$.

Figure 5.11 Port P0 to P14 Measurement Circuit

Switching Characteristics
$\mathrm{VCC}=3.3 \mathrm{~V}$
(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.44 Memory Expansion Mode and Microprocessor Mode (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 5.11		30	ns
$\mathrm{th}_{\text {(BCLK-AD) }}$	Address output hold time (in relation to BCLK)		4		ns
th(RD-AD)	Address output hold time (in relation to RD)		0		ns
th(WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
$\mathrm{th}_{\text {(BCLK-CS }}$	Chip select output hold time (in relation to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
$\mathrm{th}_{\text {(BCLK-ALE) }}$	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
$\mathrm{th}_{\text {(BCLK-RD) }}$	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
$\mathrm{th}_{\text {(BCLK-WR) }}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			40	ns
$\mathrm{th}_{\text {(BCLK-DB) }}$	Data output hold time (in relation to BCLK) ${ }^{(3)}$		4		ns
$\mathrm{ta}_{\text {(DB-WR) }}$	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR) ${ }^{(3)}$		(NOTE 1)		ns
$\mathrm{ta}_{\text {(BCLK-HLDA }}$	HLDA output delay time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{f(\text { BCLK })}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:

$$
\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-40[\mathrm{~ns}]
$$

n is " 1 " for 1 -wait setting, " 2 " for 2 -wait setting and " 3 " for 3 -wait setting. When $n=1, f(B C L K)$ is 12.5 MHz or less.
3. This standard value shows the timing when the output is off, and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.
Hold time of data bus is expressed in

$\mathrm{t}=-\mathrm{CR} \times \ln \left(1-\mathrm{V}_{\mathrm{ol}} / \mathrm{V}_{\mathrm{cc}}\right)$
by a circuit of the right figure.
For example, when $\mathrm{Vol}=0.2 \mathrm{Vcc}, \mathrm{C}=30 \mathrm{pF}$,
$R=1 \mathrm{k} \Omega$, hold time of output "L" level is
$\mathrm{t}=-30 \mathrm{pF} \times 1 \mathrm{k} \Omega \times \ln (1-0.2 \mathrm{Vcc} / \mathrm{Vcc})=6.7 \mathrm{~ns}$.

Switching Characteristics
(Referenced to VCC $=3.3 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, at Topr $=-40$ to $85^{\circ} \mathrm{C}$ unless otherwise specified)

Table 5.45 Memory Expansion Mode and Microprocessor Mode
(for 2- to 3-wait setting, external area access and multiplexed bus selection)

Symbol	Parameter	Measuring Condition	Standard		Unit
			Min.	Max.	
td(BCLK-AD)	Address output delay time	Figure 5.11		50	ns
th(BCLK-AD)	Address output hold time (in relation to BCLK)		4		ns
tn (RD-AD)	Address output hold time (in relation to RD)		(NOTE 1)		ns
tn (WR-AD)	Address output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-CS)	Chip select output delay time			50	ns
th(BCLK-CS)	Chip select output hold time (in relation to BCLK)		4		ns
th (RD-CS) $^{\text {(}}$	Chip select output hold time (in relation to RD)		(NOTE 1)		ns
th(WR-CS)	Chip select output hold time (in relation to WR)		(NOTE 1)		ns
td(BCLK-RD)	RD signal output delay time			40	ns
th (BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			40	ns
$\mathrm{th}_{\text {(BCLK-WR) }}$	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (in relation to BCLK)			50	ns
th(BCLK-DB)	Data output hold time (in relation to BCLK)		4		ns
$\mathrm{t}_{\text {d(DB-WR) }}$	Data output delay time (in relation to WR)		(NOTE 2)		ns
th(WR-DB)	Data output hold time (in relation to WR)		(NOTE 1)		ns
$\mathrm{t}_{\mathrm{d} \text { (BCLK-HLDA) }}$	HLDA output delay time			40	ns
$\mathrm{td}_{\text {(BCLK-ALE) }}$	ALE signal output delay time (in relation to BCLK)			25	ns
th (BCLK-ALE)	ALE signal output hold time (in relation to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (in relation to Address)		(NOTE 3)		ns
th (ALE-AD)	ALE signal output hold time (rin relation to Address)		(NOTE 4)		ns
$t_{\text {d (}}(\mathrm{DD}-\mathrm{RD})$	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdz(RD-AD)	Address output floating start time			8	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-10[\mathrm{~ns}]
$$

2. Calculated according to the BCLK frequency as follows:

$$
\frac{(\mathrm{n}-0.5) \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-50[\mathrm{~ns}] \quad \mathrm{n} \text { is " } 2 \text { " for } 2 \text {-wait setting, " } 3 \text { " for } 3 \text {-wait setting. }
$$

3. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-40[\mathrm{~ns}]
$$

4. Calculated according to the BCLK frequency as follows:

$$
\frac{0.5 \times 10^{9}}{\mathrm{f}(\mathrm{BCLK})}-15[\mathrm{~ns}]
$$

XIN input

TAilN input

TAiOUT input

TAiOUT input (Up/down input)

(When count on rising edge
is selected)
Two-phase pulse input in event counter mode

Figure 5.12 Timing Diagram (1)

Memory Expansion Mode and Microprocessor Mode
(Effective for setting with wait)

(Common to setting with wait and setting without wait)

NOTE:

1. The above pins are set to high-impedance regardless of the input level of the BYTE pin, the PM06 bit in the PM0 register, and the PM11 bit in the PM1 register.
Measuring conditions :

- $\mathrm{VCC}=3.3 \mathrm{~V}$
- Input timing voltage : Determined with $\mathrm{V}_{\mathrm{IL}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$
- Output timing voltage: Determined with $\mathrm{VoL}=1.65 \mathrm{~V}, \mathrm{VOH}=1.65 \mathrm{~V}$

Figure 5.13 Timing Diagram (2)

Write timing

Figure 5.14 Timing Diagram (3)

Write timing

Figure 5.15 Timing Diagram (4)

Memory Expansion Mode and Microprocessor Mode
(For 2-wait setting and external area access)

Read timing

Write timing

tcyc $=\frac{1}{f(B C L K)}$
Measuring conditions :

- $\mathrm{VCC}=3.3 \mathrm{~V}$
- Input timing voltage : VIL $=0.6 \mathrm{~V}, \mathrm{~V}$ IH $=2.7 \mathrm{~V}$
- Output timing voltage : Vol $=1.65 \mathrm{~V}, \mathrm{VOH}=1.65 \mathrm{~V}$

Figure 5.16 Timing Diagram (5)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=3.3 \mathrm{~V}$
(For 3-wait setting and external area access)
Read timing

Write timing

Figure 5.17 Timing Diagram (6)

Write timing

tcyc $=\frac{1}{f(B C L K)}$
Measuring conditions :

- $\mathrm{VCC}=3.3 \mathrm{~V}$
- Input timing voltage : VII $=0.6 \mathrm{~V}, \mathrm{~V} \mathrm{VH}=2.7 \mathrm{~V}$
- Output timing voltage : Vol $=1.65 \mathrm{~V}$, V OH $=1.65 \mathrm{~V}$

Figure 5.18 Timing Diagram (7)

Memory Expansion Mode and Microprocessor Mode
$\mathrm{VCC}=3.3 \mathrm{~V}$
(For 3-wait setting, external area access and multiplexed bus selection)

Read timing

Write timing

tcyc $=\frac{1}{f(B C L K)}$
Measuring conditions :

- $\mathrm{VCC}=3.3 \mathrm{~V}$
- Input timing voltage : V IL $=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$
- Output timing voltage : Vol $=1.65 \mathrm{~V}$, Voн $=1.65 \mathrm{~V}$

Figure 5.19 Timing Diagram (8)

Appendix 1. Package Dimensions

REVISION HISTORY				M16C/6N Group (M16C/6NL, M16C/6NN) Data Sheet
Rev.	Date	Description		
		Page	Summary	
1.00	Jul. 20, 2004	-	First edition issued	
1.01	Nov. 01, 2004	-	Revised edition issued * Revised parts and revised contents are as follows (except for expressional change).	
		26 27 28 31	Table 5.2 Recommended Operating Conditions (1) - loн(peak): Unit is revised from "V" to "mA". Table 5.3 Recommended Operating Conditions (2) - NOTE 3: "VCC = $3.0 \pm 0.3 \mathrm{~V}$ " is revised to "VCC = $3.3 \pm 0.3 \mathrm{~V}$ ". Table 5.4 ІІн, Il:: "P3_3" is revised to "P3_7" in Parameter. Table 5.9: $\mathrm{VCC}=3.0 \pm 0.3 \mathrm{~V}$ " is revised to " $\mathrm{VCC}=3.3 \pm 0.3 \mathrm{~V}$ " in Flash Program, Erase Voltage.	
1.02	Jul. 01, 2005	-	Revised edition issued *Revised parts and revised contents are as follows (except for expressional change).	
		5 13 19 28 29 29 30	Table 1.3 Product List is revised. Flgure 4.1 SFR Information (1): The value of After Reset in CM2 Register is revised. Figure 4.7 SFR Information (7): NOTE 1 is revised. Table 5.4 Electrical Characteristics (1) - Measuring Condition of Vol is revised from "Lol $=-200 \mu A$ " to "Lol $=200 \mu \mathrm{~A}$ ". Table 5.5 Electrical Characteristics (2): Mask ROM (5th item) - "f(XCIN)" is changed to "($f($ BCLK $)$). Table 5.6 A/D Conversion Characteristics: "Tolerance Level Impedance" is deleted.	
2.10	Aug.25, 2006	-	Revised edition issued * Memory expansion and microprocessor modes are added. *Revised parts and revised contents are as follows (except for expressional change).	
		2 3 5 6 7,8 9 10 to 12 13 to 15 18 19	Table 1.1 Fuictions and Specifications for M16C/6N Group (100-pin version) - Operating Mode is revised. Table 1.2 Fuictions and Specifications for M16C/6N Group (128-pin version) - Operating Mode is revised. Table 1.3 Product Information - Status of development is revised and NOTES 1 and 2 are added. Figure 1.3 Pin Assignments (1): Bus control pins are added. Tables 1.4 and 1.5 List of Pin Names for 100-pin package (1)(2) are added. Figure 1.4 Pin Assignments (2): Bus control pins are added. Tables 1.6 to 1.8 List of Pin Names for 128-pin package (1)(2)(3) are added. Tables 1.9 to 1.11 Pin Functions (1)(2)(3) are revised. 3. Memory: Last sentence (In memory expansion ...) is added. Figure 3.1 Memory Map: NOTES 1 and 2 are added. Table 4.1 SFR Information (1) - Value of After Reset in PM0 is revised. - CSR Register is added to 0008h. - CSE Register is added to 001Bh. - NOTE 1 is added.	

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble

1. Renesas Technology Corp. puts the maximer may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the tim publication of these mat that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, inc
 450 Holger Way, San Jose, CA 95134-1368, U.S.A
 Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

